Wordcloud
Strategy: BotE
Downloaded: 20220112
Stoploss: -1.1
The provided code appears to be a part of a Python class called BotE, which is implementing the populate_indicators method. This method is responsible for populating various technical indicators for a given financial DataFrame. The indicators are calculated using functions from the ta and qtpylib libraries.

Here's a breakdown of what the strategy does: Calculates trend-related indicators: Average Directional Index (ADX) PLUS Directional Movement (PLUS_DM) PLUS Directional Indicator (PLUS_DI) MINUS Directional Movement (MINUS_DM) MINUS Directional Indicator (MINUS_DI) Aroon indicators (aroonup, aroondown, aroonosc) Awesome Oscillator (ao) Keltner Channel (kc_upperband, kc_lowerband, kc_middleband, kc_percent, kc_width) Ultimate Oscillator (uo) Calculates momentum-related indicators: Commodity Channel Index (cci) Relative Strength Index (rsi), with additional calculations for Fisher Transform (fisher_rsi and fisher_rsi_norma) Stochastic Oscillator (slowd and slowk) Stochastic Fast (fastd and fastk) Stochastic RSI (fastd_rsi and fastk_rsi) Moving Average Convergence Divergence (MACD) (macd, macdsignal, macdhist) Money Flow Index (mfi) Rate of Change (roc) Calculates volatility-related indicators: Bollinger Bands (bb_lowerband, bb_middleband, bb_upperband, bb_percent, bb_width) Weighted Bollinger Bands (wbb_upperband, wbb_lowerband, wbb_middleband, wbb_percent, wbb_width) Calculates moving averages: Exponential Moving Averages (ema3, ema5, ema10, ema21, ema50, ema100, ema150, ema200, ema250) Simple Moving Averages (sma3, sma5, sma10, sma21, sma50, sma100, sma150, sma200, sma250) Calculates additional indicators: Parabolic SAR (sar) Triple Exponential Moving Average (tema) Hilbert Transform - SineWave (htsine and htleadsine) Candlestick patterns (CDLHAMMER, CDLINVERTEDHAMMER, CDLDRAGONFLYDOJI, CDLPIERCING, CDLMORNINGSTAR, CDL3WHITESOLDIERS, CDLHANGINGMAN, CDLSHOOTINGSTAR, CDLGRAVESTONEDOJI, CDLDARKCLOUDCOVER, CDLEVENINGDOJISTAR, CDLEVENINGSTAR, CDL3LINESTRIKE, CDLSPINNINGTOP, CDLENGULFING, CDLHARAMI, CDL3OUTSIDE, CDL3INSIDE) Applies Heikin-Ashi transformation (ha_open, ha_close, ha_high, ha_low) to the DataFrame.

The code also performs some additional operations like printing metadata, creating a SQLite database, storing the DataFrame in the database, and loading a trained model if it exists.

Please note that the code provided is only a part of the implementation and doesn't show how the strategy is used or how trades are executed based on these indicators.

Unable to parse Traceback (Logfile Exceeded Limit)
stoploss: -1.1
timeframe: 5m
hash(sha256): b15342fc9c1bbf11a3268f68130ce79b71a59b3f28c7b4f093814f81dbb40aa6
indicators:
upper ema250 CDLDRAGONFLYDOJI CDLGRAVESTONEDOJI close
CDLSPINNINGTOP bb_lowerband bb_percent CDL3WHITESOLDIERS kc_middleband
volume sma10 high fisher_rsi_norma cci
ha_high adx aroonosc ema50 minus_dm
plus_dm CDLHANGINGMAN aroondown CDLEVENINGDOJISTAR plus_di
date open ha_open slowk macdsignal
fastk_rsi minus_di roc lower rsi
sma3 sine kc_percent wbb_upperband htsine
tema ema150 wbb_lowerband uo mfi
ema5 kc_width macdhist CDLHAMMER sma250
htleadsine CDLEVENINGSTAR sma100 ema10 sar
wbb_width CDL3O

Similar Strategies: (based on used indicators)

Strategy: BBands, Similarity Score: 91.38%
Strategy: TenderEnter, Similarity Score: 91.38%
Strategy: TestStrategy, Similarity Score: 91.38%
Strategy: sample_strategy_284, Similarity Score: 91.38%
Strategy: sample_strategy_3, Similarity Score: 91.38%
Strategy: stoploss, Similarity Score: 91.38%
Strategy: Neat_RL, Similarity Score: 89.66%
Strategy: bbl3h1rsi, Similarity Score: 89.66%
Strategy: macd_strategy, Similarity Score: 89.66%
Strategy: poimacd, Similarity Score: 87.93%
Strategy: FRAYSTRAT_BTCUSDT_1H, Similarity Score: 86.21%
Strategy: Discord_BuzzzMoneyV1, Similarity Score: 84.48%
Strategy: MACDCross, Similarity Score: 84.48%
Strategy: MACDcross, Similarity Score: 84.48%
Strategy: Discord_3_ElliotV5, Similarity Score: 75.86%
Strategy: Discord_ElliotV4, Similarity Score: 75.86%
Strategy: Discord_ElliotV5, Similarity Score: 75.86%
Strategy: ElliotV2, Similarity Score: 75.86%
Strategy: ElliotV2_1, Similarity Score: 75.86%
Strategy: ElliotV2_dca_meneguzzo, Similarity Score: 75.86%
Strategy: ElliotV3_983, Similarity Score: 75.86%
Strategy: ElliotV4, Similarity Score: 75.86%
Strategy: ElliotV4_961, Similarity Score: 75.86%
Strategy: ElliotV4_984, Similarity Score: 75.86%
Strategy: ElliotV5HO_264, Similarity Score: 75.86%
Strategy: ElliotV5_SMA, Similarity Score: 75.86%
Strategy: MarwoSkipVol, Similarity Score: 75.86%
Strategy: MarwoSkipVol15, Similarity Score: 75.86%
Strategy: Discord_ElliotV2, Similarity Score: 74.14%
Strategy: Discord_ElliotV5HO, Similarity Score: 74.14%
Strategy: ElliotV531, Similarity Score: 74.14%
Strategy: ElliotV5_309, Similarity Score: 74.14%

last change: 2024-07-27 06:00:41