Wordcloud
Strategy: Discord_1_TEST
Downloaded: 20220727
Stoploss: -0.99


Not Enough Data to display!

Average Overall
Not Enough Data! / Avg statistics not populated yet.
The "test" strategy is a simple trading strategy that uses moving averages and the Relative Strength Index (RSI) to generate buy and sell signals. Here is a breakdown of how the strategy works: Indicators: Exponential Moving Averages (EMA): The strategy calculates two EMAs, one with a time period of 5 and another with a time period of 10, and adds them to the dataframe as 'ema5' and 'ema10', respectively. Relative Strength Index (RSI): The strategy calculates the RSI with a time period of 7 and adds it to the dataframe as 'rsi'.

Buy Signal: The strategy generates a buy signal when the 'ema5' crosses above the 'ema10' using the 'qtpylib.crossed_above' function.

It marks the corresponding candle with a value of 1 in the 'buy' column and assigns the tag 'Golden Cross' to the 'buy_tag' column.

Sell Signal: The strategy generates a sell signal when the 'rsi' crosses above the value of 70. It marks the corresponding candle with a value of 1 in the 'sell' column. Configuration: The strategy uses a daily timeframe ('1d') for analysis. It enables the sell signal and allows selling for both profits and losses ('sell_profit_only = False'). It processes only new candles ('process_only_new_candles = True') and requires at least 10 candles for startup ('startup_candle_count = 10'). The strategy does not use a custom stop loss ('use_custom_stoploss = False'). ROI and Stop Loss: The strategy sets a minimal return on investment (ROI) of 1. This means that if a trade reaches a profit of 1% or more, it will be sold. The stop loss is set at -0.05, which means that if a trade reaches a loss of 5% or more, it will be sold. This strategy aims to capture trends indicated by the EMA crossover and identifies overbought conditions using the RSI indicator for selling. Please note that this description provides a high-level overview, and further analysis and testing may be required to assess the strategy's effectiveness.

Traceback (most recent call last): File "/freqtrade/freqtrade/main.py", line 42, in main return_code = args['func'](args) ^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/commands/optimize_commands.py", line 58, in start_backtesting backtesting.start() File "/freqtrade/freqtrade/optimize/backtesting.py", line 1401, in start min_date, max_date = self.backtest_one_strategy(strat, data, timerange) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/optimize/backtesting.py", line 1318, in backtest_one_strategy preprocessed = self.strategy.advise_all_indicators(data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/strategy/interface.py", line 1378, in advise_all_indicators return {pair: self.advise_indicators(pair_data.copy(), {'pair': pair}).copy() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/strategy/interface.py", line 1378, in return {pair: self.advise_indicators(pair_data.copy(), {'pair': pair}).copy() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: 'NoneType' object has no attribute 'copy'
stoploss: -0.99
timeframe: 5m
hash(sha256): 244d3a3e89102b7f37e1c6d0275dc49caf478facb326ab75d67ff8b2cda6df8e
indicators:
sma_200_1h upper ema_200 ema_50 close
sma_5 tail bb_lowerband mfi ema_200_1h
bbdelta volume smaHigh ATR ssl_up
closedelta sslDown open hlv volume_mean_slow
ema_50_1h smaLow sma_200 high sslUp
mid ssl_down_1h ssl_down rsi_1h lower
bb_middleband rsi bb_upperband ema_slow low
ssl_up_1h

Similar Strategies: (based on used indicators)

Strategy: 01_CombinedBinHAndClucV7_OPT, Similarity Score: 97.3%
Strategy: 01_CombinedBinHAndClucV7_OPT_02, Similarity Score: 97.3%
Strategy: 04_CombinedBinHAndClucV8, Similarity Score: 97.3%
Strategy: CombinedBinHAndClucV7, Similarity Score: 97.3%
Strategy: CombinedBinHAndClucV7_702, Similarity Score: 97.3%
Strategy: CombinedBinHAndClucV8Hyper, Similarity Score: 97.3%
Strategy: CombinedBinHAndClucV8Hyper_2, Similarity Score: 97.3%
Strategy: CombinedBinHAndClucV8XH, Similarity Score: 97.3%
Strategy: CombinedBinHAndClucV8XHO, Similarity Score: 97.3%
Strategy: Discord_1_test, Similarity Score: 97.3%
Strategy: CombinedBinHClucAndSMAOffset, Similarity Score: 94.59%
Strategy: CombinedBinHClucAndSMAOffset_2, Similarity Score: 94.59%
Strategy: 02_CombinedBinHClucAndMADV5, Similarity Score: 89.19%
Strategy: CombinedBinHClucAndMADV5, Similarity Score: 89.19%
Strategy: CombinedBinHClucAndMADV5_2, Similarity Score: 89.19%
Strategy: Discord_Bzed, Similarity Score: 89.19%
Strategy: 08_NostalgiaForInfinityV2_OPT, Similarity Score: 86.49%
Strategy: 08_NostalgiaForInfinityV2_OPT_02, Similarity Score: 86.49%
Strategy: CombinedBinHAndClucV6, Similarity Score: 86.49%
Strategy: CombinedBinHAndClucV6_2, Similarity Score: 86.49%
Strategy: NostalgiaForInfinityV1, Similarity Score: 86.49%
Strategy: NostalgiaForInfinityV2, Similarity Score: 86.49%
Strategy: HybridMonster, Similarity Score: 83.78%

last change: 2024-09-02 15:35:46