Wordcloud
Strategy: default_strategy_51
Downloaded: 20220113
Stoploss: -0.1
The DefaultStrategy class is an implementation of a trading strategy for backtesting purposes. It extends the IStrategy class and provides methods to populate indicators, generate buy signals, and generate sell signals for a given DataFrame of trading data. The populate_indicators method adds various technical analysis (TA) indicators to the DataFrame.

These indicators include ADX, Awesome Oscillator, MACD, MFI, Minus DM, Minus DI, Plus DM, Plus DI, RSI, Fisher RSI, Stochastic Oscillator, Bollinger Bands, Exponential Moving Averages (EMA), SAR, Simple Moving Average (SMA), Triple Exponential Moving Average (TEMA), Hilbert Transform - Sine Wave, and Heikin-Ashi candles.

The populate_buy_trend method generates buy signals based on the values of the TA indicators in the DataFrame.

The buy conditions include low RSI, low fast %D of Stochastic Oscillator, high ADX, and positive Plus DI. The populate_sell_trend method generates sell signals based on the values of the TA indicators in the DataFrame. The sell conditions include crossing above 70 for RSI or fast %D, ADX above 10, and positive Minus DI. By using this DefaultStrategy class, you can backtest different trading strategies by evaluating the performance of the buy and sell signals generated by the TA indicators on historical trading data.

Traceback (most recent call last): File "/freqtrade/freqtrade/main.py", line 42, in main return_code = args['func'](args) ^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/commands/optimize_commands.py", line 58, in start_backtesting backtesting.start() File "/freqtrade/freqtrade/optimize/backtesting.py", line 1374, in start min_date, max_date = self.backtest_one_strategy(strat, data, timerange) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/optimize/backtesting.py", line 1291, in backtest_one_strategy preprocessed = self.strategy.advise_all_indicators(data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/strategy/interface.py", line 1335, in advise_all_indicators return {pair: self.advise_indicators(pair_data.copy(), {'pair': pair}).copy() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/strategy/interface.py", line 1335, in return {pair: self.advise_indicators(pair_data.copy(), {'pair': pair}).copy() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/strategy/interface.py", line 1367, in advise_indicators return self.populate_indicators(dataframe, metadata) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/user_data/strategies/default_strategy_51.py", line 123, in populate_indicators dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband'] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "talib/_abstract.pxi", line 444, in talib._ta_lib.Function.__call__ File "talib/_abstract.pxi", line 294, in talib._ta_lib.Function.set_function_args File "talib/_abstract.pxi", line 513, in talib._ta_lib.Function.__check_opt_input_value TypeError: Invalid parameter value for nbdevup (expected float, got int)
stoploss: -0.1
timeframe: 5m
hash(sha256): 168b405972664ced170ca31e6763e75556cccdc9cbbbeb3edd4dc006708f480b
indicators:
lowerband upper htsine minus_dm tema
plus_dm CDLDRAGONFLYDOJI CDLHANGINGMAN CDLSHOOTINGSTAR CDLGRAVESTONEDOJI
close ha_low CDLSPINNINGTOP mfi bb_lowerband
ema5 CDLENGULFING fastd_rsi CDL3WHITESOLDIERS fastk
macdhist CDLHAMMER htleadsine sma slowd
leadsine CDLMORNINGSTAR CDLEVENINGDOJISTAR blower open
plus_di fastd ema10 CDLPIERCING CDLEVENINGSTAR
sar ha_open CDL3OUTSIDE high macdsignal
slowk mid fisher_rsi fastk_rsi ema100
fisher_rsi_norma cci ha_close macd CDL3INSIDE
ema3 CDLINVERTEDHAMMER CDLH

Similar Strategies: (based on used indicators)

Strategy: DefaultStrategy, Similarity Score: 98.15%
Strategy: DefaultStrategy_0, Similarity Score: 98.15%
Strategy: default_strategy, Similarity Score: 98.15%
Strategy: default_strategy_111, Similarity Score: 98.15%
Strategy: default_strategy_132, Similarity Score: 98.15%
Strategy: default_strategy_15, Similarity Score: 98.15%
Strategy: default_strategy_189, Similarity Score: 98.15%
Strategy: default_strategy_2, Similarity Score: 98.15%
Strategy: default_strategy_23, Similarity Score: 98.15%
Strategy: default_strategy_3, Similarity Score: 98.15%
Strategy: default_strategy_5, Similarity Score: 98.15%
Strategy: default_strategy_6, Similarity Score: 98.15%
Strategy: default_strategy_7, Similarity Score: 98.15%
Strategy: default_strategy_8, Similarity Score: 98.15%
Strategy: default_strategy_9, Similarity Score: 98.15%
Strategy: legacy_strategy, Similarity Score: 96.3%
Strategy: legacy_strategy_28, Similarity Score: 96.3%
Strategy: test_strategy, Similarity Score: 96.3%
Strategy: test_strategy_163, Similarity Score: 96.3%
Strategy: test_strategy_193, Similarity Score: 96.3%
Strategy: test_strategy_194, Similarity Score: 96.3%
Strategy: test_strategy_302, Similarity Score: 96.3%
Strategy: test_strategy_471, Similarity Score: 96.3%
Strategy: test_strategy_5, Similarity Score: 96.3%
Strategy: sample_strategy, Similarity Score: 94.44%
Strategy: Strategy1HBTC, Similarity Score: 92.59%
Strategy: Ichimoku, Similarity Score: 79.63%
Strategy: ichimoku, Similarity Score: 79.63%
Strategy: FrayLIVEBTC15m, Similarity Score: 77.78%

last change: 2024-01-21 19:00:52