Wordcloud
Strategy: Miku_PP_v3
Downloaded: 20220113
Stoploss: -0.1


Not Enough Data to display!

Average Overall
Not Enough Data! / Avg statistics not populated yet.
The Miku_PP_v3 strategy is implemented as a class that inherits from the IStrategy class. It contains three main functions: populate_indicators, populate_buy_trend, and populate_sell_trend. The populate_indicators function takes a DataFrame and metadata as input and applies slow time-frame indicators to the DataFrame.

It returns the modified DataFrame.

The populate_buy_trend function takes a DataFrame and metadata as input and populates the 'buy' column of the DataFrame with a value of 1 for rows that meet the condition (dataframe['pivots_ok'] > 0).

This suggests a buying trend based on the indicator 'pivots_ok'. The populate_sell_trend function takes a DataFrame and metadata as input and populates the 'sell' column of the DataFrame with a value of 1 for rows that meet the condition (dataframe['trending_over'] > 0). This suggests a selling trend based on the indicator 'trending_over'. In summary, the Miku_PP_v3 strategy applies slow time-frame indicators to a DataFrame, identifies buying opportunities based on the 'pivots_ok' indicator, and identifies selling opportunities based on the 'trending_over' indicator.

stoploss: -0.1
timeframe: 5m
hash(sha256): 696f29954732d9d0b0c8138f52305e86308471c1820027f7efcfc6bb53c37620
indicators:
senkou_a_9 1dr1 senkou_b_20 trending_over 1d
ema20 senkou_b_88 ichimoku_ok s1 senkou_a_20
kijun_sen_20 tenkan_sen_9 close 1dpivot pivot
pivots_ok tenkan_sen tenkan_sen_444 senkou_a_conversion_line_period tenkan_sen_355
rS1 kijun_sen_355_5m 1drS1 kijun_sen high
kijun_sen_355 senkou_a_100 senkou_span_a 1ds1 tenkan_sen_20
senkou_b_444 ema20_5m pivot_1d r1_1d senkou_span_b
kijun_sen_9 r1 tenkan_sen_88 kijun_sen_conversion_line_period rS1_1d
tenkan_sen_355_5m senkou_b_conversion_line_period low senko

Similar Strategies: (based on used indicators)

Strategy: Discord_Miku_PP_v3, Similarity Score: 97.78%
Strategy: Miku_PP_v4, Similarity Score: 88.89%

last change: 2023-06-27 11:56:04