The BinHModWhiteHOV0 strategy is a trading strategy that uses various indicators to generate buy and sell signals. Here is a brief explanation of what the strategy does:
In the populate_indicators method, the strategy calculates and adds several indicators to the input dataframe, including:
'bottom' and 'top': the minimum and maximum values of the 'open' and 'close' prices. Bollinger Bands: calculates the lower, middle, and upper bands using a 40-day window and 2 standard deviations.
'bbwidth': the width of the Bollinger Bands as a percentage of the middle band.
'space': the rolling mean of 'bbwidth' over a 60-day period.
'bbdelta': the absolute difference between the middle band and the lower band of the Bollinger Bands. 'bottomdelta': the absolute difference between the current 'bottom' value and the previous 'bottom' value. 'topdelta': the absolute difference between the current 'top' value and the previous 'top' value. 'tail': the absolute difference between the current 'bottom' value and the 'low' price. In the populate_buy_trend method, the strategy generates buy signals based on the following conditions:
If the shorter-term exponential moving average ('ema_trend') is greater than the longer-term exponential moving average ('ema_slow'). If the longer-term exponential moving average ('ema_slow') is increasing over a specified number of periods ('ema_rise'). If the EWO (Elliott Wave Oscillator) indicator is above a certain threshold ('ewo_high'). If additional conditions related to Bollinger Bands, 'bottom', 'bbdelta', 'tail', 'bottomdelta', 'topdelta', and 'volume' are met. In the populate_sell_trend method, the strategy generates sell signals based on the condition that the closing price is above a certain offset ('high_offset') multiplied by the middle band value, and the 'volume' is positive. Overall, the strategy combines multiple technical indicators and conditions to identify potential buying and selling opportunities in the market.
Traceback (most recent call last):
File "/freqtrade/freqtrade/main.py", line 42, in main
return_code = args['func'](args)
^^^^^^^^^^^^^^^^^^
File "/freqtrade/freqtrade/commands/optimize_commands.py", line 58, in start_backtesting
backtesting.start()
File "/freqtrade/freqtrade/optimize/backtesting.py", line 1391, in start
self.load_bt_data_detail()
File "/freqtrade/freqtrade/optimize/backtesting.py", line 270, in load_bt_data_detail
self.detail_data = history.load_data(
^^^^^^^^^^^^^^^^^^
File "/freqtrade/freqtrade/data/history/history_utils.py", line 99, in load_data
hist = load_pair_history(pair=pair, timeframe=timeframe,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/freqtrade/freqtrade/data/history/history_utils.py", line 57, in load_pair_history
return data_handler.ohlcv_load(pair=pair,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/freqtrade/freqtrade/data/history/idatahandler.py", line 320, in ohlcv_load
pairdf = self._ohlcv_load(
^^^^^^^^^^^^^^^^^
File "/freqtrade/freqtrade/data/history/featherdatahandler.py", line 62, in _ohlcv_load
pairdata = read_feather(filename)
^^^^^^^^^^^^^^^^^^^^^^
File "/home/ftuser/.local/lib/python3.11/site-packages/pandas/io/feather_format.py", line 129, in read_feather
return feather.read_feather(
^^^^^^^^^^^^^^^^^^^^^
File "/home/ftuser/.local/lib/python3.11/site-packages/pyarrow/feather.py", line 226, in read_feather
return (read_table(
^^^^^^^^^^^
File "/home/ftuser/.local/lib/python3.11/site-packages/pyarrow/feather.py", line 252, in read_table
reader = _feather.FeatherReader(
^^^^^^^^^^^^^^^^^^^^^^^
File "pyarrow/_feather.pyx", line 79, in pyarrow._feather.FeatherReader.__cinit__
File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Not an Arrow file